



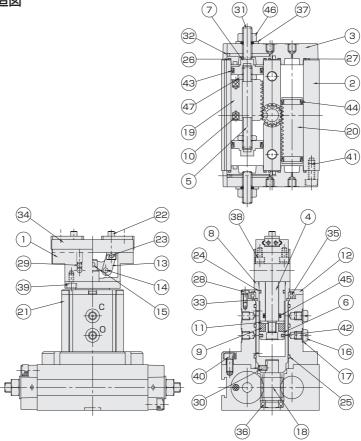
- ◆ロータリアクチュエータ(2位置・3位置 停止形と各種ミニハンドを完全一体化
- ◆ハンド回転とチャッキングの複合操作が可能。ハンドの配管・スイッチ配線が 捻じれません。

RH01シリーズ

■形式表示記号

●防塵カバーセット

形式表示記号 JN - RH01 16


防塵カバー材質

JN: 材質NBR JS: 材質シリコン JF: 材質バイトン(フッ素)

JF : フッ素ゴムカバー付 JS : シリコンゴムカバー付

サイズ 16: φ16用 20: φ20用 シリーズ名

■内部構造図

部品リスト

NO	名 称	材 質	NO	名 称	材 質	NO	名 称	材 質
1	本体 (H)	アルミ合金	17	ガスケット	軟鋼+NBR	33	軸用止め輪	炭素工具鋼
2	本体 (R)	アルミ合金	18	ピニオンロッド	炭素鋼	34	リニアガイド	ベアリング鋼
3	ヘッドカバー	アルミ合金	19	ラック	ステンレス鋼	35	ベアリング	ベアリング鋼
4	ピストンロッド(H)	ステンレス鋼	20	ラックピストン	炭素鋼	36	ベアリング	ベアリング鋼
5	ピストンロッド(R)	ステンレス鋼	21	ケース	アルミ合金	37	ファスナーシール	軟鋼+NBR
6	ピストン(H)	アルミ合金	22	ナックル	ステンレス鋼	38	六角穴付ボルト(H)	ステンレス鋼
7	ピストン(R)	ステンレス鋼	23		炭素工具鋼	39	六角穴付ボルト(H)	ステンレス鋼
8	シリンダチューブ	ステンレス鋼	24	0リング(H)	NBR	40	六角穴付ボルト(C)	ステンレス鋼
9	マグネット(H)	磁性体	25	0リング(C)	NBR	41	六角穴付ボルト(R)	ステンレス鋼
10	マグネット(R)	磁性体	26	0リング(R)	NBR	42	ピストンパッキン(H)	NBR
11	オサエカバー(H)	アルミ合金	27	0リング(R)	NBR	43	ピストンパッキン(R)	NBR
12	オサエカバー(C)	炭素鋼	28	十字穴付なべ小ネジ	ステンレス鋼	44	ピストンパッキン(R)	NBR
13	アクションレバー	炭素鋼	29	六角穴付止小ネジ(H)	クロムモリブデン鋼	45	ロッドパッキン	NBR
14	支点ピン	炭素工具鋼	30	六角穴付止小ネジ(H)	クロムモリブデン鋼	46	六角ナット	炭素鋼
15	圧入ピン	炭素工具鋼	31	六角穴付止小ネジ(R)	ステンレス鋼	47	六角ナット	黄銅(六価クロムレス)
16	プラグ	ステンレス鋼	32	鋼球	炭素工具鋼			

(C): ケーシング部、(H): ハンド部、(R): ロータ部を表します。

RH01シリーズ

■仕様

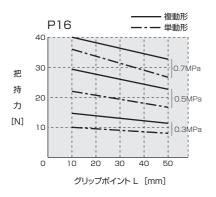
				夕部			ハン	ド部		
形 式			D	В	G16C	P16C(A)	V160(A)	016C	G20C	P20C
シリンダ内径	[mr	n]	φ14-	+φ20	16			2	0	
停止位置数			3又は4	2						
作動形式			複動形 複動形 複動形(常時開単動形) 複動形							
使用流体			空気							
使用圧力範囲	[MF	Pa]	0.3~0.7	0.2~0.7	0.12~0.7	0.12~0.7(0.25~0.7)	0.12~0.7(0.2~0.7)	0.2~0.7	0.12	~0.7
耐 圧	[MF	Pa]				1.0	05			
使用温度範囲	[°C]				0~60℃					
揺動角度 ※3	[°]		40°≦2α≦180°	90°-180°	O° —					
角度調整範囲(両側)	[°]		0°~-60°	+3°~-20°	_					
理論トルク ^{注)1}	[N·	m]	0.9×P	2.8×P			_	_		
許容エネルギー	[J]		1×10 ⁻²	3×10 ⁻²			_	_		
開閉ストローク·揺動角			-	_	10mm	8mm	+00° 10°	+180°~-5°	14mm	12mm
実効把持力 エア圧力 0.5 [MPa]	N	開	-	_	39.0	34.0(3.9)	-10(0)-	21	60	60.9
ブリップポイントL[mm]注)2		閉	_	_	26.0	25.5(21)	12(10)	18	45	45.7
クッション構造			ナシ	エアクッション方式			ナ	シ		
給油 不要			要	不 要 ^{注)3}						
配管口径				M5×0.8						
適用スイッチ			RC·2	ZC形			ZE	形		

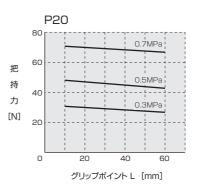
注) 1: 理論トルクPは、使用圧力(MPa)を示します。 注) 2: グリップポイント上は、30mmです。 注) 3: 給油はロータリジョイント部に必要です。

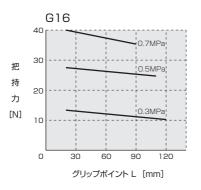
製品質量[g]

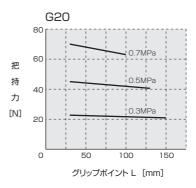
ロータ部	ハ ンド 部										
	G16C	P16A	P16C	VIOA	V100	016C	G20C	P20C			
В	747	723	722	760	760	735	846	736			
D	739	715	714	752	752	727	無し	無し			

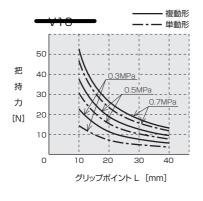
防塵カバー質量(付加質量)[g]

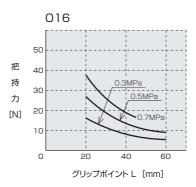

P16	JN=8	JS=8	JF=10	
P20	JN=12	JS=12	JF=16	

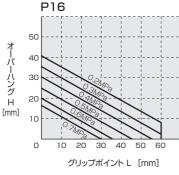

■ロータハンドの長所

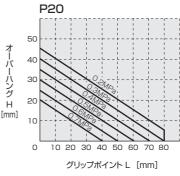

項目	ロータハンド	アダプター結合方式
外	ハンドセンサーの配線、エア配管共に固定されて いるのでシンプルでコンパクト。	ハンドセンサーの配線、エア配管はハンドと共に回転する ため、長さに余裕を取る必要が有り大柄で繁雑になる。
取 付 l 作 業 l メンテナン	最小限スペースの取付けが可能で取付けが簡単。	配線、配管のねじれや回転範囲を考慮して回りのスペース を確保する必要がある。又、ねじれや曲げの為、一体型ロー タハンドに比べ耐久性が劣る。
動作	ハンドの回転は先端チャック部のみで外部との干 渉が少ない。	ハンド部すべてが回転運動をする為、他設備との接触による 配線の断線、エア漏れに配慮する必要がある。又、配線、配管 のねじれや曲げがロータの動きに影響を与える。
精	軸受け用ベアリングが本体の上下端にある為、ロングスパンで回転精度が高く、耐久性に優れている。	ロータ内の軸受け用ベアリングで支持している為、ショート スパンで回転精度がロータハンドに比べ劣る。

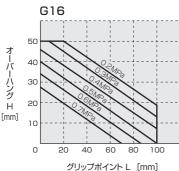

 $^{**1:\}beta$ は90°·180°が標準ですが、他の角度の場合はご相談ください。**2:()内は単動形を示します。**3:4位置停止の場合は $40° \le 2\alpha + \beta \le 180°$ となります。

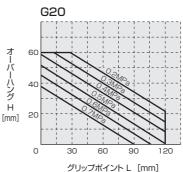

■実効把持力(閉力)



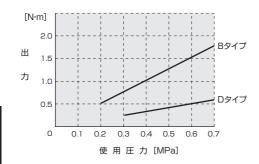




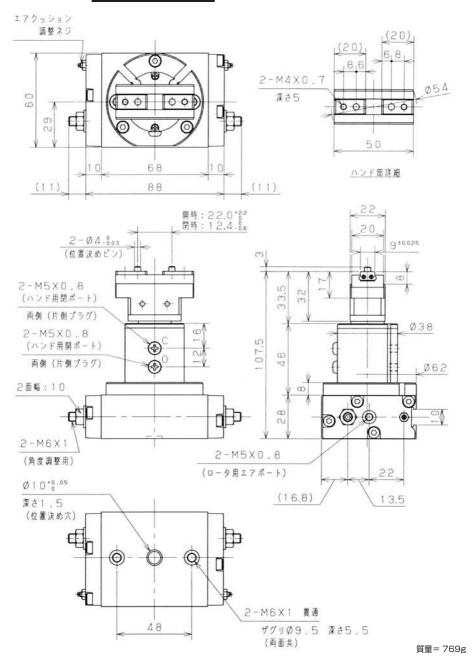



ロータハンド RHOーシリーズ

■グリップポイント制限範囲



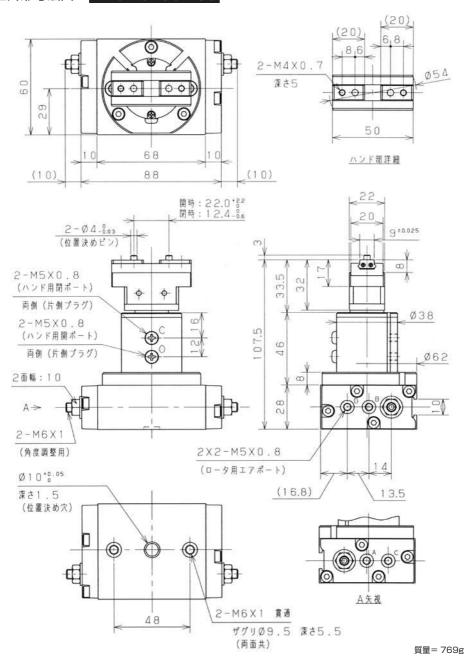
■実効トルク

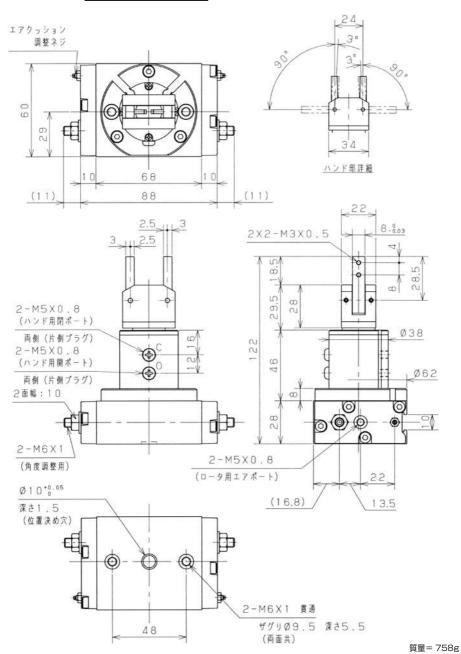

■停止位置の調整方法

© P.598~599を参照願います。

■停止位置の制御方法

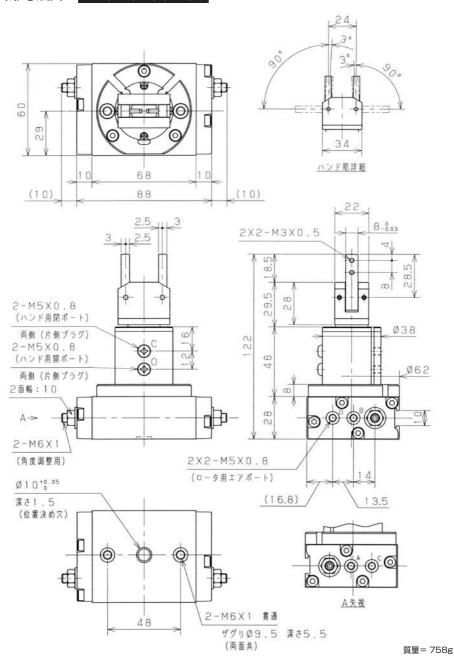
© P.600~601を参照願います。


■外形寸法図 RHO1-G16C-B□

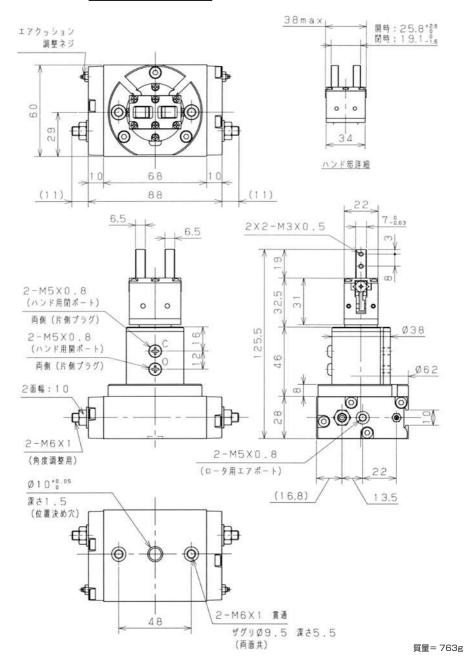

ロータハンド

RHOーシリーズ

■外形寸法図 RH01-G16C-D90

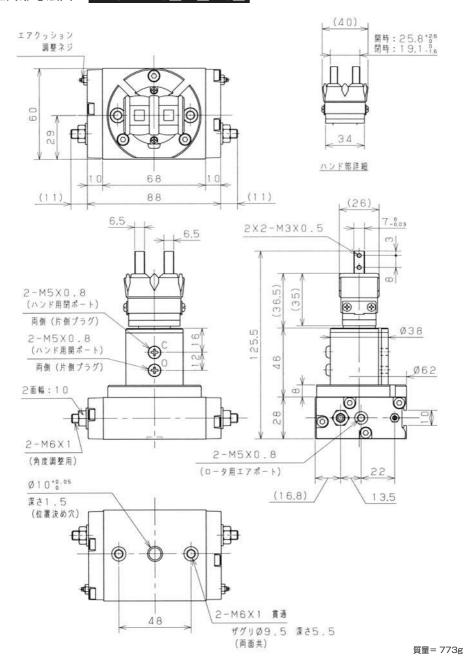


■外形寸法図 RH01-016C-B□

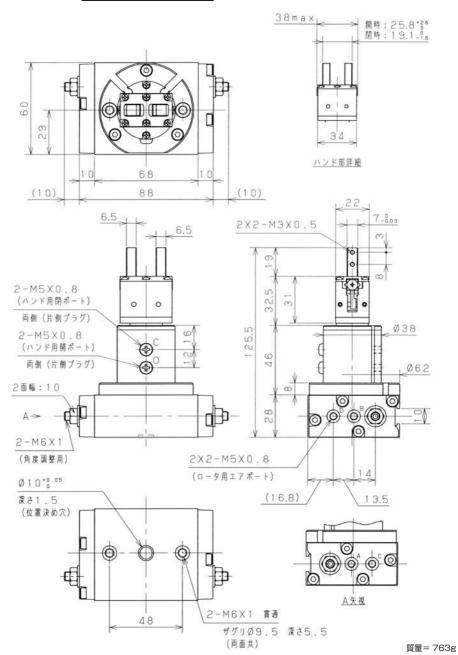


R**H01**シリーズ

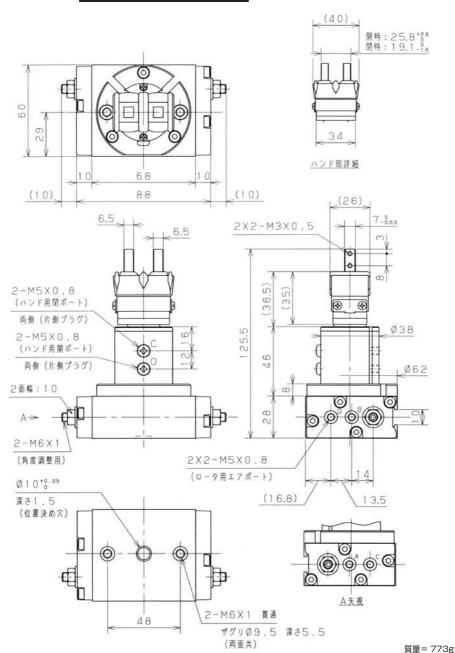
■外形寸法図 RH01-016C-D90

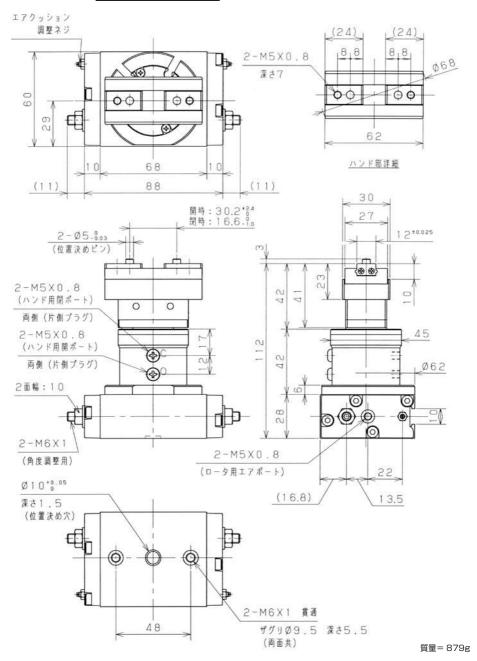


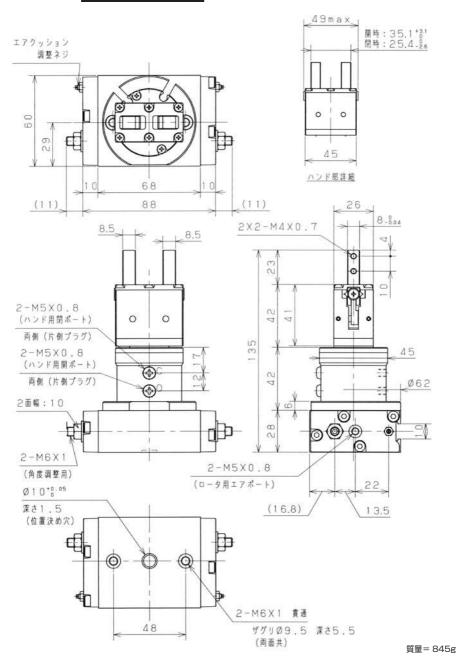
■外形寸法図 RHO1-P16□-B□

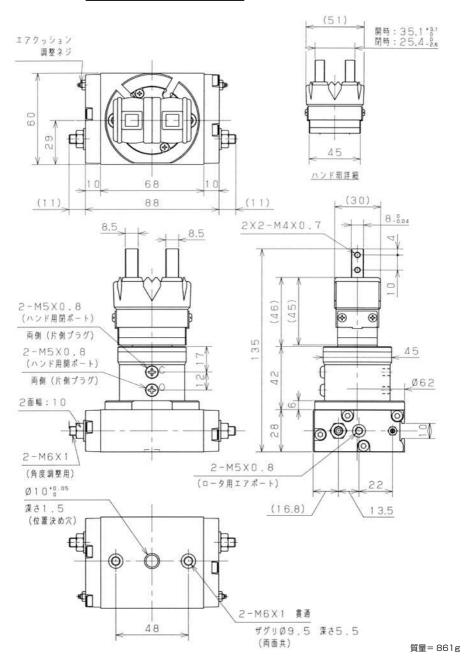


RH01シリーズ


■外形寸法図 RH01-P16□-B□※J□

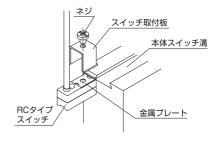

■外形寸法図 RHO1-P16□-D90


■外形寸法図 RH01-P16□-D90%J□


■外形寸法図 RH01-G20C-B□

■外形寸法図 RH01-P20C-B□

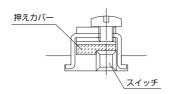
■外形寸法図 RH01-P20C-B□※J□



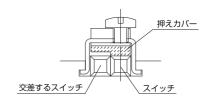
技術資料 ―ロータ/スイッチ取付方法―

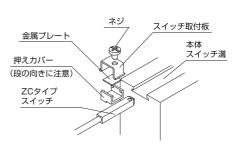
ロータスイッチ取付方法

■RCタイプの場合

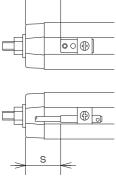

- (1) スイッチ取付板を本体スイッチ溝に入れます。
- (2) スイッチを感度位置に合わせます。 (ON幅、応差を考慮して下さい)
- (3) 取付板をスイッチの金属プレート部分に合わせます。
- (4) ネジの締付トルクは0.3N·m以下として下さい。

■ZCタイプの場合


ZCタイプのスイッチは最大4つまで取付可能です。 取付数量・取付位置によってスイッチ取付方法が変わりますので、ご注意下さい。


スイッチが交差しない場合(1個取付)

- (1) スイッチの取付方法により押えカバーの段の 方向を決めます。押えカバーに金属プレート を乗せてスイッチ取付板にはめ込みます。
- (2) スイッチ取付板を本体スイッチ溝に入れます。
- (3) スイッチを感度位置に合わせます。 (ON幅、応差を考慮して下さい)
- (4) ネジの締付トルクは0.3N·m以下として下さい。

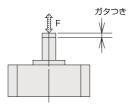

スイッチが交差する場合(2個取付)

ロータスイッチ取付位置の目安

	夕	角度	R	CA, RO	СВ		RCM			ZC		\rightarrow	S
	ププ	円反	S	作動角	応差角	S	作動角	応差角	S	作動角	応差角		
RS01-10 (RT02共通)	В	90-180	6	100	13	2.5	45	4	2	52	5		
	D	180	8.5	100	13	6.5	45	-	6	32	5		
RS01-13	В	180	15	130	10	12	47	4	6	58	6		
RH01 RS01-14	В	180 90	13 17.5	80	10	10 14.5	30	3	4 8.5	38	3		
(RT02共通)	D	180	16			18	1		7				
RS01-16	В	90-180	16	85	6	13	30	2	8	- 33	3		
(RT02共通)	D	180	21	85		18	30		13	33	3		
RS01-18	В	90-180	16	52	4	14	20	2	9	26	3		
(RT01·02共通)	D	180	22	ا ا	4	20	20	_	15	20	3	\rightarrow	S
RS01-22	В	90-180	20	47	3	18	20	2	13	- 22	_		
(RT01·02共通)	D	180	25	4/	3	23	20	~	18	22	3		

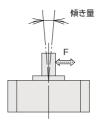
取付位置:S(mm) ·····ロータの端面からスイッチがONする位置の最高感度位置をON幅の中心にした時の端面までの距離 応差角度(*)・・・・・スイッチを固定し、軸を回転させたときに、ONしてから逆方向に回転させ、OFFするまでの角度 作動角度(*)・・・・・軸を固定した状態で、スイッチを左右に動かし、スイッチがONしている範囲を角度で表したもの

ロータ用語説明

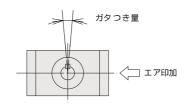

カタログ中に使用されているロータの用語と説明を以下に記します。

実効トルク

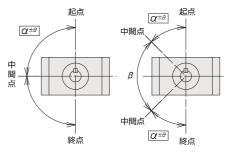
理論出力トルクに摩擦抵抗を考慮した出力の目安を 表します。


スラストガタ

ロータの旋回軸に対し、同軸方向に荷重を加えた場合のガタつき量を表します。

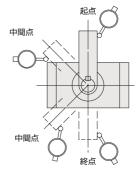

ラジアルガタ

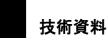
ロータの旋回軸に対し、垂直方向に荷重を加えた場合の傾き量を表します。


バックラッシュ

エアを印加して旋回端で停止している旋回軸の回 転方向のガタつきを表します。

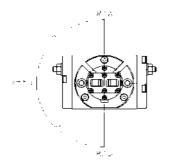
α角設定精度


中間停止形ロータにおける α 角の実際に揺動する角度の公差を表します。 α 角設定精度は製品組立時の許容精度であるため、製品完成後に調整することはできません。以下に各サイズの α 角設定精度を記します。

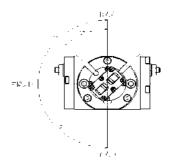

サイズ	10,	13,	14	16,	18,	22
α 角設定精度(θ)	-	±1.5°			±1°	

繰返し角度精度

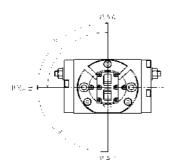
各旋回端にて10回繰返し停止した場合の、停止角度 の振れ量を表します。



サイズ	全サイズ
繰返し精度	±0.1°


ローターハンド/停止位置について

例: RH01-P16C-D90(通常タイプ)



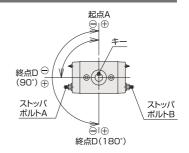
印加により、起点Aから反時計回り に回転します。

例: RH01-P16C-D90-W1(45度振り)

例: RH01-P16C-D90-W2(90度振り)

位置	バル	レブ1	バルブ2		
14 恒	Α	В	С	D	
起点A	0	-	-	0	
中間B	0	-	0	-	
終点D	-	0	0	-	

技術資料 ―ロータ/停止位置の調整方法―


停止位置の調整方法(RSO1・RTO1・RTO2・RHO1共通)

■2位置停止(エアクッションタイプ)の場合

起点Aのキー位置を調整する時はストッパボルトAを、終点Dの キー位置を調整する時はストッパボルトBを調整してください。

→側調整範囲:MAX2.5°→側調整範囲:MAX10°

注) (例の角度調整は30°まで調整可能ですが、 エアクッションの効きが悪くなりますので 調整は10°までとしてください。

起点A

 Θ

ストッパ

ボルトB

中間点B

(4点停止)

中間点C (4点停止)

中間点B'

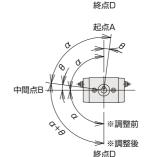
(3点停止)

ストッパ

ボルトA

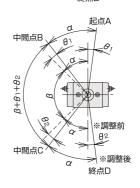
■3位置停止・4位置停止の場合

起点Aのキー位置を調整する時はストッパボルトAを、終点Dの キー位置を調整する時はストッパボルトBを調整してください。


→側調整範囲: MAX2.5°→側調整範囲: MAX30°

但し、キー位置を調整する場合は 下記の点に注意してください。

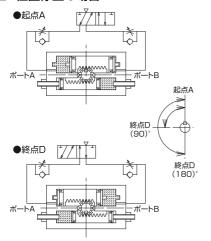
3位置停止の時


起点Aの位置を θ [°]調整すると、中間点Bの位置も同じ方向に θ [°]だけ変化します。(α 角度は変化しません)

しかし、終点Dの位置は変化しないため、中間点Bから終点D までの角度は(α+θ)°となります。起点Aの位置を調整する際 には終点Dの位置も同じだけ調整するようにしてください。

4位置停止の時

起点Aの位置を θ 1°調整すると、中間点Bの位置も同じ方向 $(c\theta)$ 1°だけ変化します。また、終点Dの位置を θ 2°調整すると、中間点Cの位置も同じ方向 $(c\theta)$ 2°だけ変化します。 (α) 角度は変化しません)この時、中間点Bから中間点Cまでの角度は (β) + θ 1+ θ 2)°となります。


■ロッドの回転調整角度とストッパボルトA・Bの回転角度の関係

呼び径	φ10	φ13	φ14	φ16	φ18	φ22
ボルト1回転での ロッド回転角度の変化	11.5°	11.5°	9.5°	9.0°	7.8°	5.5°
ロッド回転角度が1°変化 する場合のボルト回転角度	30.9°	31.4°	37.7°	40°	46°	54.5°

技術資料 —ロータ/制御方法—

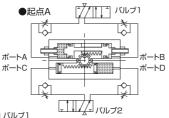
制御方法 (RSO1・RTO1・RTO2・RHO1共通)

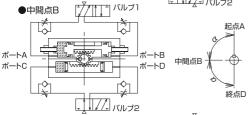
■2位置停止の場合

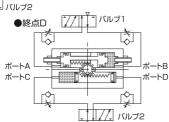


●動作制御方法

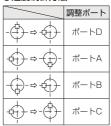
左表に供給エアの条件と、その時のロッド キー位置の相関を示します。表中の○印は エア供給を示し、一 印はエア排気を示しま す。


●速度制御方法



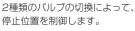

左表にロッド回転方向と、その回転時 に速度調整するために流量制御する ポートの相関を示します。なお、速度 制御はメータアウトのスピコンで行っ てください。又、クラッキング圧力の 高いスピコンの使用は避けて下さい。

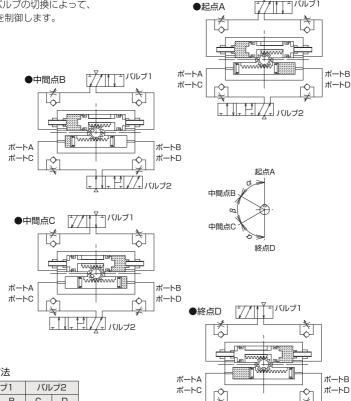
■3位置停止の場合



●動作制御方法

+-	バル	ブ1	バルブ2			
位置	Α	В	С	О		
+	0	ĺ	ĺ	0		
-	0	_	0			
		0	0			


上表に供給エアの条件と、その時のロッドキー 位置の相関を示します。表中の ○印はエア供給 を示し、一 印はエア排気を示します。


●速度制御方法

上表にロッド回転方向と、その回転時に速度調整するために流量制御するボートの相関を示します。 なお、速度制御はメータアウトのスピコンで行ってください。又、クラッキング圧力の高いスピコンの使用は避けて下さい。調整を行う際は、まず、C,Dボートの調整をした後、A,Bボートの調整を行ってください。

■4位置停止の場合

●動作制御方法

+-	バル	ブ1	バル	ブ2
位置	Α	В	С	D
-\$-	0	_	_	0
4	0	_	0	_
注	0	_	0	0
*	_	0	0	0
- \$	_	0	_	0
-		0	0	

上表に供給エアの条件と、その時のロッドキー 位置の相関を示します。表中の 〇印はエア供給 を示し、一印はエア排気を示します。

- 間の順次動作をさせる制御 には、2つの中間過程が必要です。

●速度制御方法

	調整ポート
-\$-\$	ポートロ
-\$	ポートA
	ポートロ
	ポートC
-\$-\$-\$	ポートB
	ポートC

左表にロッド回転方向と、その回転時に速度 調整するために流量制御するポートの相関 を示します。なお、速度制御はメータアウト のスピコンで行ってください。又、クラッキング 圧力の高いスピコンの使用は避けて下さい。 調整を行う際は、まず、C,Dポートの調整を した後、A,Bポートの調整を行ってください。